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CHAPTER
ONE

INTRODUCTION

Note:

This package is in beta. In future versions, the API may change substantially. Please use the GitHub issue

tracker to report bugs or to request features.

This code was written to perform the procedure for testing firm conduct developed in “Testing Firm Conduct” by Marco
Duarte, Lorenzo Magnolfi, Mikkel Sglvsten, and Christopher Sullivan. It builds on the PyBLP source code (see Conlon
and Gortmaker (2020)) - to do so.

The code implements the following features:

Computes Rivers and Vuong (2002) (RV) test statistics to test a menu of two or more models of firm conduct
allowing for the possibility that firms or consumers face per unit or ad-valorem taxes.

Implements the RV test using the variance estimator of Duarte, Magnolfi, Sglvsten, and Sullivan (2023), includ-
ing options to adjust for demand estimation error and clustering

Computes the effective F-statistic proposed in Duarte, Magnolfi, Sglvsten, and Sullivan (2023) to diagnose in-
strument strength with respect to worst-case size and best-case power of the test, and reports appropriate critical
values

Reports Hansen, Lunde, and Nason (2011) MCS p-values for testing more than two models

Compatible with PyBLP Conlon and Gortmaker (2020), so that demand can be estimated with PyBLP, and the
estimates are an input to the test for conduct

For a full list of references, see the references in Duarte, Magnolfi, Sglvsten, and Sullivan (2023).

1.1

Install

First, you will need to download and install python, which you can do from this link.

You will also need to make sure that you have all package dependencies installed.

To install the pyRVtest package, use pip:

pip install pyRVtest

This should automatically install the python packages on which pyRVtest depends: numpy, pandas, statsmodels, pyblp

To update to a newer version of the package use:

pip install --upgrade pyRVtest



https://github.com/anyatarascina/pyRVtest/issues
https://github.com/anyatarascina/pyRVtest/issues
https://arxiv.org/abs/2301.06720
https://onlinelibrary.wiley.com/doi/full/10.1111/1756-2171.12352
https://onlinelibrary.wiley.com/doi/full/10.1111/1756-2171.12352
https://onlinelibrary.wiley.com/doi/full/10.1111/1368-423X.t01-1-00071
https://arxiv.org/abs/2301.06720
https://arxiv.org/abs/2301.06720
https://www.jstor.org/stable/41057463?seq=1#metadata_info_tab_contents
https://onlinelibrary.wiley.com/doi/full/10.1111/1756-2171.12352
https://arxiv.org/abs/2301.06720
https://www.python.org/

pyRVtest

1.2 Using the package

For a detailed tutorial about how to set up and run the testing procedure, see Tutorial.

1.3 Citing the package

When using the package, please include the following citation:

Duarte, M., L. Magnolfi, M. Sglvsten, C. Sullivan, and A. Tarascina (2023): “pyRVtest: A Python package for testing
firm conduct,” https://github.com/anyatarascina/pyRVtest.

@misc{ pyrvtest, author={Marco Duarte and Lorenzo Magnolfi and Mikkel S{o}lvsten and Christopher Sullivan and
Anya Tarascina}, title={texttt{pyRVtest}: A Python package for testing firm conduct}, howpublished={url{https://
github.com/anyatarascina/pyRVtest}}, year={2023}

1.4 Bugs and Requests

Please use the GitHub issue tracker to submit bugs or to request features.
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CHAPTER
TWO

TUTORIAL

This section uses a series of Jupyter Notebooks to explain how pyRVtest can be used to solve example problems,
compute post-estimation outputs, and simulate problems.

2.1 Testing Firm Conduct with Cereal Data

import numpy as np
import pandas as pd
import pyblp

import pyRVtest

pyblp.options.digits = 2
pyblp.options.verbose = False
pyRVtest.options.digits = 2
pyRVtest.__version__

'0.2.0'

2.1.1 Overview

In this tutorial, we are going to use the Nevo (2000) fake cereal data which is provided in the PyBLP package. PyBLP
has excellent documentation including a thorough tutorial for estimating demand on this dataset which can be found
here.

Note that the data are originally designed to illustrate demand estimation. Thus, the following caveats should be kept
in mind:

* The application in this tutorial only serves the purpose to illustrate how pyRVtest works. The results we show
should not be used to infer conduct or any other economic feature about the cereal industry.

* To test conduct, a researcher generally needs data on both cost shifters, and strong excluded instruments. As the
data was designed to perform demand estimation, it does not necessarily have the features that are desirable to
test conduct in applications.

* Hence, the specifications that we use below, including the specification of firm cost and the candidate conducts
models, are just shown for illustrative purposes and may not be appropriate for the economic context of the cereal
industry.

The tutorial proceeds in the following steps:
* Load the main dataset

 Estimate demand with PyBLP
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e Test firm conduct with pyRVtest

2.1.2 Load the main dataset

First we will use pandas to load the necessary datasets from PyBLP. We call the main data containing information on
markets and product characteristics product_data. The important product characteristics for demand estimation in
this data set are price, sugar, and mushy.

[2]: product_data = pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION)
product_data.head()

[2]: market_ids «city_ids quarter product_ids firm_ids brand_ids shares \
0 C01Q1 1 1 F1B04 1 4 0.012417
1 C01Q1 1 1 F1BO6 1 6 0.007809
2 C01Q1 1 1 F1BO7 1 7 0.012995
3 co1Q1 1 1 F1B09 1 9 0.005770
4 C01Q1 1 1 F1B11 1 11 0.017934

prices sugar mushy ... demand_instrumentsl® demand_instrumentsll \
0 0.072088 2 1 2.116358 -0.154708
1 0.114178 18 1 -7.374091 -0.576412
2 0.132391 4 1 2.187872 -0.207346
3 0.130344 3 0 2.704576 0.040748
4 0.154823 12 0 1.261242 0.034836

demand_instrumentsl2 demand_instrumentsl3 demand_instrumentsl4 \

0 -0.005796 0.014538 0.126244

1 0.012991 0.076143 0.029736

2 0.003509 0.091781 0.163773

3 -0.003724 0.094732 0.135274

4 -0.000568 0.102451 0.130640
demand_instrumentsl5 demand_instrumentsl6é demand_instrumentsl7 \

0 0.067345 0.068423 0.034800

1 0.087867 0.110501 0.087784

2 ®.111881 0.108226 0.086439

3 0.088090 0.101767 0.101777

4 0.084818 0.101075 0.125169
demand_instrumentsl8 demand_instrumentsl9

0 0.126346 0.035484

1 0.049872 0.072579

2 0.122347 0.101842

3 0.110741 0.104332

4 0.133464 0.121111

[5 rows x 30 columns]
It is possible to estimate demand and test conduct with other data, provided that they have the product_data structure
described here.

We will also load market demographics data from PyBLP and call this agent_data. This data contains draws of
income, income_squared, age, and child.

6 Chapter 2. Tutorial


https://pandas.pydata.org/
https://pyblp.readthedocs.io/en/stable/_api/pyblp.Problem.html#pyblp.Problem

[3]:

[3]:

[4]:

[4]:

pyRVtest

agent_data = pd.read_csv(pyblp.data.NEVO_AGENTS_LOCATION)

agent_data.head()

market_ids city_ids quarter weights nodes®
0 C01Q1 1 1 0.05 0.434101
1 C01Q1 1 1 0.05 -0.726649
2 c01Q1 1 1 0.05 -0.623061
3 co1Q1 1 1 0.05 -0.041317
4 c01Q1 1 1 0.05 -0.466691

nodes3 income income_squared age

0 0.161017 0.495123 8.331304 -0.230109 -0.
1 0.129732 0.378762 6.121865 -2.532694 0.
2 -0.795549 0.105015 1.030803 -0.006965 -0.
3 0.259044 -1.485481 -25.583605 -0.827946 0.
4 0.092019 -0.316597 -6.517009 -0.230109 -0.

2.1.3 Estimate demand with PyBLP

nodesl
-1.500838
0.133182
-0.138241
1.257136
0.226968

child
230851
769149
230851
769149
230851

nodes2 \
-1.151079
-0.500750
0.797441
-0.683054
1.044424

Next, we set up the demand estimation problem using Conlon and Gortmaker (2020).

In this example the linear characteristics in consumer preferences are price and product fixed effects. Nonlinear char-
acteristics with random coefficients include a constant, price, sugar, and mushy. For these variables, we are going to
estimate both the variance of the random coeflicient as well as demographic interactions for income, income_squared,

age, and child. More info can be found here.

Running the problem setup yields output which summarizes the dimensions of the problem (see here) for description of
each variable. Also reported are the Formulations, i.e., the linear characteristics or non-linear characteristics for which
we are estimating either variances or demographic interactions, and a list of the demographics being used.

pyblp_problem = pyblp.Problem(
product_formulations=(

pyblp.Formulation('® + prices ', absorb='C(product_ids)"),
pyblp.Formulation('l + prices + sugar + mushy'),

),

agent_formulation=pyblp.Formulation('® + income + income_squared + age + child'),

product_data=product_data,
agent_data=agent_data

;yblp_problem
Dimensions:
T N F I K1 K2 D MD ED
04 2256 5 1880 1 4 4 20 1
Formulations:
Column Indices: 0 1 2 3
KI: Linear Characteristics  prices

(continues on next page)
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(continued from previous page)

X2: Nonlinear Characteristics 1 prices sugar mushy
d: Demographics income income_squared age child

Next, we solve the demand estimation and store the results for use with the testing module.

The output includes information on computation progress, as well as tables with the parameter estimates. A full list of
the post-estimation output which can be queried is found here.

pyblp_results = pyblp_problem.solve(
sigma=np.diag([0.3302, 2.4526, 0.0163, 0.2441]),
pi=[
[5.4819, 0.0000, 0.2037, 0.0000],
[15.8935, -1.2000, 0.0000, 2.6342],
[-0.2506, 0.0000, 0.0511, 0.0000],
[1.2650, 0.0000, -0.8091, 0.0000]
I
method="1s",
optimization=pyblp.Optimization('bfgs', {'gtol': le-5})
)
pyblp_results

Problem Results Summary:

GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix ..
—Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number ..

—Condition Number

1 +4.6E+00 +6.9E-06 +2.4E-05 +1.6E+04 0 +6.9E+07 o
— +8.4E+08

Cumulative Statistics:

Computation Optimizer Optimization Objective Fixed Point Contraction
Time Converged Iterations Evaluations Iterations Evaluations

00:00:25 Yes 51 57 46384 143967

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):

Sigma: 1 prices sugar mushy [ Pi: income income_
—»squared age child
______________________________________________ | —————— e, e
1 +5.6E-01 [ 1 +2.3E+00 +0.
—0E+00 +1.3E+00 +0.0E+00
(+1.6E-01) [ (+1.2E+00) o
N (+6.3E-01)

(continues on next page)
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(continued from previous page)

prices +0.0E+00 +3.3E+00 | prices +5.9E+02 -3.
—0E+01 +0.0E+00 +1.1E+01
(+1.3E+00) | (+2.7E+02) (+1.
—4E+01) (+4.1E+00)
I
sugar +0.0E+00 +0.0E+00 -5.8E-03 | sugar -3.8E-01 +0.
—0E+00 +5.2E-02 +0.0E+00
(+1.4E-02) [ (+1.2E-01) o
. (+2.6E-02)
I
mushy +0.0E+00 +0.0E+00 +0.0E+00 +9.3E-02 | mushy +7.5E-01 +0.
—0E+00 -1.4E+00 +0.0E+00
(+1.9E-01) | (+8.0E-01) o
. (+6.7E-01)

Beta Estimates (Robust SEs in Parentheses):

-6.3E+01
(+1.5E+01)

2.1.4 Test firm conduct with pyRVtest

pyRVtest follows a similar structure to PyBLP. First, you set up the testing problem, then you run the test.

Setting Up Testing Problem

Here is a simple example of the code to set up the testing problem for testing between two models: 1. manufacturers set
retail prices according to Bertrand vs 2. manufacturers set retail prices according to monopoly (i.e., perfect collusion).

We set up the testing problem with pyRVtest.problem and we store this as a variable testing_problem:

testing_problem = pyRVtest.Problem(
cost_formulation = (
pyRVtest.Formulation('0® + sugar', absorb = 'C(firm_ids)"' )
)
instrument_formulation = (
pyRVtest.Formulation('® + demand_instruments® + demand_instrumentsl')
),
model_formulations = (
pyRVtest.ModelFormulation(model_ downstream='bertrand', ownership_downstream=
< '"firm_ids"),
pyRVtest.ModelFormulation(model_downstream='"monopoly', ownership_downstream=
< 'firm_ids")
),
product_data = product_data,
demand_results = pyblp_results

2.1. Testing Firm Conduct with Cereal Data 9
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Detailed information on the input accepted by Problem and how to specify them can be found in the API documentation.
Below we clarify the inputs (observed exogenous cost shifters, instruments for testing conduct, and models to be tested)
in this particular example:

e cost_formulation: Here, the researcher specifies the observable linear shifters of marginal cost (in the current

version of the package, these must be exogenous variables). In this example, we have defined the cost formulation
as pyRVtest.Formulation('® + sugar', absorb = 'C(firm_ids)' ). Here, ® means no constant. We
are also including the variable sugar as an observed cost shifter and this variable must be in the product_data.
Finally absorb = 'C(firm_ids) ' specifies that we are including firm fixed effects which will be absorbed.
The variable firm_ids must also be in the product_data.

instrument_formulation: Here, the researcher specifies the set of instruments she wants to use to test
conduct. In this example, we will use one set of instruments to test conduct which contains two variables,
demand_instruments® and demand_instrumentsl. Thus, we have defined the instrument formulation as
pyRVtest.Formulation('® + demand_instruments® + demand_instrumentsl'). Here, ® means no
constant and this should always be specified as a 0. Both demand_instruments0® and demand_instrumentsl
must also be in the product_data. It is possible to test conduct separately for more than one set of instruments
as shown in the example below.

model_formulations: Here, we have specified two ModelFormulations and therefore two models to
test. The first model is specified as pyRVtest.ModelFormulation(model_downstream='bertrand',
ownership_downstream='firm_ids') model_downstream = 'bertrand' indicates that retail prices are
set according to Bertrand. ownership_downstream="£firm_ids' specifies that the ownership matrix in each
market should be built from the variable firm_id in the product_data. For testing more than two models, see
the example below. To find the full list of models supported by pyRVtest and their associated ModelFormulation
see the Library of Models page.

testing_problem

Dimensions:

N M L d_z®

94 2256 2 1 2

Formulations:

Column Indices: 0 1
w: Marginal Cost sugar

z0: Instruments demand_instruments® demand_instrumentsl

Models:
) 1
Model - Downstream bertrand monopoly
Model - Upstream None None
Firm IDs - Downstream firm_ids monopoly
Firm IDs - Upstream None None
VI Index None None
Cost Scaling Column None None
Unit Tax None None
(continues on next page)
10 Chapter 2. Tutorial


https://pyrvtest.readthedocs.io/en/stable/_notebooks/model_library.html

pyRVtest

(continued from previous page)

Advalorem Tax None None
Advalorem Payer None None
User Supplied Markups None None

The first table Dimensions reports the following statistics:
* T = number of markets
* N = number of observations
e M = number of models (each specified by a model formulation)
e L = number of instrument sets (each specified by an instrument formulation)

¢ d_zo = number of instruments in the first instrument set (with more than one instrument formulation, additional
columns d_z1, d_zo, ... d_z( r—1) would be reported)

The second table Formulations reports the variables specified as observed cost shifters and excluded instruments.
The first row indicates that sugar is the only included observed cost shifter (ignoring the fixed effects). The second
row indicates that demand_instruments0 and demand_instruments1 are the excluded instruments for testing each
model.

The third table Models specifies the models being tested, where each model is a column in the table

¢ Model-Downstream reports the name of the model of firm conduct. For vertical models of wholesaler and
retailer behavior, this reports the nature of retailer conduct.

* Model-Upstream reports, for vertical models with wholesalers and retailers, the nature of wholesaler conduct.
In this example, we are ignoring upstream behavior and assuming manufacturers set retail prices directly as in
Nevo (2001).

* Firm Ids - Downstream is the variable in product_data used to make the ownership matrix for setting retail
conduct (prices or quantities). If monopoly is specified as Model-Downstream, then Firm id - Downstream will
default to monopoly and the ownership matrix in each market will be a matrix of ones.

* Firm Ids - Upstream is the same as Firm IDs - Downstream but for wholesale price or quantity behavior.
* VI Index is the name of the dummy variable indicating whether retailer and wholesaler are vertically integrated.

* User Supplied Markups indicates if the user has chosen to input their own markup computation instead of
choosing a prespecified model for which the package will compute markups.

Additionally, the table contains outputs that are relevant when taxes are levied in the markets being studied (Unit Tax,
Advalorem Tax, Advalorem Payer). In this example, there are no taxes in the market for cereal. These will be
discussed in the testing with taxes example below.

Running the Testing Procedure

Now that the problem is set up, we can run the test, which we do with the following code.

Given that we define the variable testing_problem as pyRVtest.problem, we must write testing_problem.solve
in the first line. There are two user specified options in running the test:

* demand_adjustment: False indicates that the user does not want to adjust standard errors to account for
two-step estimation with demand. True indicates standard errors should be adjusted to account for demand
estimation.

2.1. Testing Firm Conduct with Cereal Data 11
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e clustering_adjustment: False means no clustering. True indicates that all standard errors should be clus-
tered. In this case, a variable called clustering_ids which indicates the cluster to which each group belongs
needs to appear in the product_data. See example below.

Both of these adjustments are implemented according to the formulas in Appendix C of Duarte, Magnolfi, Sglvsten,
and Sullivan (2023).

testing _results = testing_problem.solve(
demand_adjustment=False,
clustering_adjustment=False

)

testing_results

Computing Markups ...
Total Time is ... 0.1552119255065918

Testing Results - Instruments z0:

TRV: | F-stats: | MCS:
________ —_——— e | e —_——— e | e e
models 0 1 | models 0 1 | models MCS p-values
________ —— [, | S, —— = | e e
0 nan -1.144 | 0 nan 13.3 | 0 1.0
| TdkFT O AAA |
1 nan nan | 1 nan nan | 1 0.252
I I

Significance of size and power diagnostic reported below each F-stat
*®, **  or *** indicate that F > cv for a worst-case size of 0.125, 0.10, and 0.075 given.
—d_z and rho

A, AA_ or Ar indicate that F > cv for a best-case power of 0.50, 0.75, and 0.95 given d_
—z and rho

appropriate critical values for size are stored in the variable F_cv_size_list of the,
—pyRVtest results class

appropriate critical values for power are stored in the variable F_cv_power_list of the.
—pyRVtest results class

The result table is split into three parts: the pairwise RV test statistics, the pairwise F-statistics, and the model confidence
set p-values. Details on these objects and how they are computed can be found in Duarte, Magnolfi, S¢lvsten, and
Sullivan (2023).

* The first part of the table reports the pairwise RV test statistic given the specified adjustments to the standard
errors. In this example, there is one RV test statistic as we are only testing two models. Elements on and below the
main diagonal in the RV and F-statistic block are set to “nan” since both RV tests and F-statistics are symmetric
for a pair of models. A negative test statistic suggests better fit of the row model, in this case, Bertrand. The
critical values for each T%Y are 4+ 1.96, so the RV test cannot reject the null of equal fit of the two models.

* The second part reports the pairwise F-statistics, again with the specified adjustments to the standard errors. The
symbols underneath each F-statistic indicate whether the corresponding F-statistic is weak for size or for power.
The appropriate critical values for each F-statistic depend on the number of instruments the researcher is using,
as well as the value of the scaling parameter p. In the above table, we see that the F-statistic is associated with
a symbol of “***” for size. This means that the probability of incorrectly rejecting the null if it is true (Type-I
error) is at most 7.5%. The same F-statistic is associated with “*” for power, meaning that the probability of

12 Chapter 2. Tutorial
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rejecting the null if it is false is at least 95%. Therefore the instruments in this example are neither weak for size
nor for power.

* Finally, the p-values associated with the model confidence set are reported. To interpret these p-values, a re-
searcher chooses a significance level a. Any model whose p-value is below « is rejected. The models with
p-values above « cannot be rejected by the instruments and the researcher should conclude that they have equal
fit. Thus, in this example, for an o = 0.05, the researcher is left with a model confidence set containing both
models.

The testing procedure also stores additional output which the user can access after running the testing code. A full list
of available output can be found in ProblemResults.

As an example, the procedure stores the markups for each model. In the above code, we stored testing_problem.
solve() as the variable “testing_results. Thus, to access the markups, you type

testing_results.markups

[array([[0.03616274],
[0.02752501],
[0.04300875],

[0.03948227],
[0.02837644],
[0.04313683]]),
array([[0.07839009],
[0.04966324],
[0.08338118],

[0.08728693],
[0.05866822]7,
[0.0914136711)1

where the first array, testing_results.markups[0] stores the markups for model 0 and the second array
testing_results.markups[1] stores the markups for model 1.

Example with more than two models and more than one instrument set

Here we consider a more complicated example to illustrate more of the features of pyRVtest. Here, we are going to
test five models of vertical conduct: 1. manufacturers set monopoly retail prices 2. manufacturers set Bertrand retail
prices 3. manufacturers set Cournot retail quantities 4. manufacturers set Bertrand wholesale prices and retailers set
monopoly retail prices 5. manufacturers set monopoly wholesale prices and retailers set monopoly retail prices

To accumulate evidence, we are going to separatley use two different sets of instruments to test these models.

We are also going to adjust all standard errors to account for two-step estimation coming from demand, as well as cluster
standard errors at the market level. To implement these adjustments, we need to add a variable to the product_data
called clustering_ids:

product_datal'clustering_ids'] = product_data.market_ids

Next, we can initialize the testing problem.

Notice that to add more models or more instrument sets, we add model formulations and instrument formulations.
Further notice that by specifying demand_adjustment = True and clustering_adjustment = True we turn on two-
step adjustments to the standard errors as well as clustering at the level indicated by product_data.clustering_ids.

2.1. Testing Firm Conduct with Cereal Data 13
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[11]: testing_problem = pyRVtest.Problem(
cost_formulation=(

pyRVtest.Formulation('l + sugar', absorb='C(firm_ids)')

),

instrument_formulation=(

pyRVtest.Formulation('® + demand_instruments® + demand_instrumentsl'),
pyRVtest.Formulation('® + demand_instruments2 + demand_instruments3 + demand_

—instruments4')

),

model_formulations=(

pyRVtest.ModelFormulation(model downstream='monopoly', ownership_downstream=

< 'firm_ids"),

pyRVtest.ModelFormulation(model_downstream='"bertrand', ownership_downstream=

< '"firm_ids'"),

pyRVtest.ModelFormulation(model_downstream='cournot', ownership_downstream="'firm_

—ids'),
pyRVtest.ModelFormulation(
model_downstream="monopoly"',

ownership_downstream="'firm_ids"',

model_upstream="bertrand',
ownership_upstream='"firm ids'
s
pyRVtest.ModelFormulation(
model_downstream="monopoly",

ownership_downstream="firm_ids"',

model_upstream="monopoly"',
ownership_upstream="firm ids'
)
),
product_data=product_data,
demand_results=pyblp_results
)

testing_problem

[11]: Dimensions:

T N M L d_z0 d_z1l

94 2256 5 2 2 3

Formulations:

Column Indices: 0 2
w: Marginal Cost sugar

z0: Instruments demand_instruments® demand_instrumentsl
z1: Instruments demand_instruments2 demand_instruments3

demand_instruments4

Models:

(continues on next page)
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Model - Downstream

Model - Upstream None None

Firm IDs - Downstream monopoly firm_ids
Firm IDs - Upstream None None
VI Index None None
Cost Scaling Column None None
Unit Tax None None
Advalorem Tax None None
Advalorem Payer None None
User Supplied Markups None None

monopoly bertrand cournot

None

firm_ids

None
None
None
None
None
None
None

monopoly
bertrand
monopoly
firm_ids
None
None
None
None
None
None

(continued from previous page)

monopoly
monopoly
monopoly
monopoly
None
None
None
None
None
None

Now, we can run testing_problem. solve to output the testing results. Each table here shows the results for each in-
strument set. The tables appear in the order of the instrument sets specified by the user in instrument_formulations.

testing_results = testing_problem.solve(
demand_adjustment=True,
clustering_adjustment=True

)

testing_results

Computing Markups ...
Total Time is ... 19.744781017303467

Testing Results - Instruments z0:

TRV:
N | MCS:
— = | ____________________
models 0 1 2 3 4
. | models MCS p-values
T
0 nan 0.49 0.618 -0.006 -1.339
6 | 0 0.801
o
1 nan nan 0.294 -0.028 -1.402
-3 | 1 0.932
o
2 nan nan nan -0.03 -1.406
.3 | 2 1.0
S
3 nan nan nan nan -0.444
1 | 3 0.976

nan

nan

nan

nan

nan

nan

han

2 3 4.,
2.4 0.0 0
4.6 0.0 0.

ek fekdk e »
nan 0.0 0.
nan nan 0.

(continues on next page)
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(continued from previous page)

4 nan nan nan nan nan | 4 nan nan nan nan o
—hnan | 4 0.418

Testing Results - Instruments zl:

TRV: | F-stats: o
< | MCS:
________ —— ———— e e e | S, — e e ———— ——
=== I ____________________
models 0 1 2 3 4 | models 0 1 2 3 o
4 | models MCS p-values
________ —_——— e e e e | JE —_—— e e ———— —_——
T | ____________________
0 nan 0.047 0.243 -0.248 -1.601 | 0 nan 2.6 2.4 0.0 0.
-8 | 0 0.808
I o
Lk |
1 nan nan 1.663 -0.219 -1.523 | 1 nan nan 3.3 0.1 0.
6 | 1 0.183
| " o g
. )7’:7’::‘: AA |
2 nan nan nan -0.25 -1.537 | 2 nan nan nan 0.0 0.
6 | 2 1.0
| * % -
L RkE A |
3 nan nan nan nan -1.971 | 3 nan nan nan nan 2.
.5 | 3 0.913
I o
;}:“:: |
4 nan nan nan nan nan | 4 nan nan nan nan o
—nan | 4 0.128

Significance of size and power diagnostic reported below each F-stat
*, **  or *** indicate that F > cv for a worst-case size of 0.125, 0.10, and 0.075 given.
—d_z and rho

A, AA_ or AA indicate that F > cv for a best-case power of 0.50, 0.75, and 0.95 given d_
—z and rho

appropriate critical values for size are stored in the variable F_cv_size_list of the.
—pyRVtest results class

appropriate critical values for power are stored in the variable F_cv_power_list of the.
—pyRVtest results class

This output has a similar format to Table 5 in Duarte, Magnolfi, Sglvsten, and Sullivan (2023). Each testing results
panel, corresponding to a set of instruments, reports in three separate blocks the RV test statistics for each pair of
models, effective F-statistic for each pair of models, and MCS p-value for the row model. See the above description for
an explanation of each.
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In interpreting these results, note that instruments z_0 and z_1 contain 2 and 3 instruments respectively. Since the
number of instruments is between 2-9, there are no size distortions above 0.025 for any model pair and instruments
are strong for size. However, the instruments are weak for power as each pairwise F-statistic is below the critical value
corresponding to best-case power of 0.95. Unsurprisingly then, no model is ever rejected from the MCS. These results
reflect the fact that the data used in the tutorial do not provide the appropriate variation to test conduct. As such, the
results should not be interpreted as to draw any conclusion about the nature of conduct in this empirical environment.
We plan to include a more economically interesting example with future releases.

Testing with Taxes

Suppose now that we want to run the testing procedure in a setting with taxes (specifically ad valorem or unit taxes).
Having taxes in the testing set up changes the first order conditions faced by the firms. To incorporate them using
pyRVtest, we can specify additional options in the ModelFormulation:

* unit_tax: a vector of unit taxes, measured in the same units as price, which should correspond to a data column
in the product_data.

e advalorem_tax: a vector of ad valorem tax rates, measured between 0 and 1, which should correspond to a
data column in the product_data.

* advalorem_payer: party responsible for paying the advalorem tax. In our example this is the consumer (other
options are ‘firm’ and ‘None’).

Here, we add ad valorem and unit tax data to the product_data for illustrative purposes.

# additional variables for tax testing
product_data[ 'unit_tax'] = .5
product_data[ 'advalorem_tax'] = .5
product_data['lambda'] = 1

Next, initialize the testing problem. Note here that the first model formulation now specifies our additional variables.

testing_problem_taxes = pyRVtest.Problem(
cost_formulation=(
pyRVtest.Formulation('® + sugar', absorb='C(firm_ids)')
),
instrument_formulation=(
pyRVtest.Formulation('® + demand_instruments® + demand_instrumentsl')
),
model_formulations=(
pyRVtest.ModelFormulation(
model_downstream="'bertrand',
ownership_downstream="'firm_ids"',
cost_scaling="1lambhda",
unit_tax='unit_tax',
advalorem_tax="'advalorem_tax',
advalorem_payer='consumer'),
pyRVtest.ModelFormulation(
model_downstream="bertrand',
ownership_downstream="firm_ids'
)
pyRVtest.ModelFormulation(
model_downstream="perfect_competition',
ownership_downstream="firm_ids'

(continues on next page)
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),
product_data=product_data,
demand_results=pyblp_results

)

testing_problem_taxes
Dimensions:

T N M L d_z0

(continued from previous page)

Formulations:
Column Indices: 0 1
w: Marginal Cost sugar

z0: Instruments demand_instruments®

demand_instrumentsl

Models:
0 1 2
Model - Downstream bertrand bertrand perfect_competition
Model - Upstream None None None
Firm IDs - Downstream firm_ids firm_ids firm_ids
Firm IDs - Upstream None None None
VI Index None None None
Cost Scaling Column lambda None None
Unit Tax unit_tax None None
Advalorem Tax advalorem_tax None None
Advalorem Payer consumer None None
User Supplied Markups None None None

As mentioned above, the Models table includes additional details related to testing with taxes:

* Unit Tax: the column in product_data corresponding to the unit tax

* Advalorem Tax : the column in product_data corresponding to the ad valorem tax

e Advalorem Payer: who is responsible for paying the tax

Finally, output the testing results.

testing_results = testing_problem_taxes.solve(

demand_adjustment=False,
clustering_adjustment=False
)

testing_results

Computing Markups ...
Total Time is ... 0.17354202270507812
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Testing Results - Instruments z0:

TRV: | F-stats: | MCS:
wodels 8 12 1 medels 8 1 2 | models s pvalues
T8 i e | 6 mm e 85 | e 1
1 nan nan -1.53 : 1 nan nhan 4?4 : 1 0.053
2 nan nan nan : 2 nan nan nan : 2 0.078
I I

Slgnlflcance of size and power diagnostic reported below each F-stat

*, %% or *** indicate that F > cv for a worst-case size of 0.125, 0.10, and 0.075 given.
—~d_z and rho

A, AA or A+ indicate that F > cv for a best-case power of 0.50, 0.75, and 0.95 given d_
—z and rho

appropriate critical values for size are stored in the variable F_cv_size_list of the.
—pyRVtest results class

appropriate critical values for power are stored in the variable F_cv_power_list of the,
—pyRVtest results class

Storing Results

If you are working on a problem that runs over the course of several days, PyBLP and pyRVtest make it easy for you to
store your results.

For example, suppose that you want to estimate one demand system and then run multiple testing scenarios. In this
case, you can simply use the PyBLP pickling method.

pyblp_results.to_pickle('my_demand_estimates")

And read them in similarly:

old_pyblp_results = pyblp.read_pickle('my_demand_estimates')

You can now use these demand estimates to run additional iterations of testing without having to re-estimate demand
each time.

Additionally, if you want to save your testing results so that you can access them in the future, you can do so with the
same method in pyRVtest.

testing _results.to_pickle('my_testing_results")

And read them back in to analyze:

old_testing_results = pyRVtest.read_pickle('my_testing results')
old_testing_results.markups
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2.2 Library of Models
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import pyRVtest

pyRVtest.__

'0.2.0'

version__

Here, we document the library of models that is currently supported by pyRVtest and how the user can specify them as

a ModelFormulation. The current library of models includes:
* Bertrand Competition with Differentiated Products
* Cournot Competition with Differentiated Products
* Monopoly (i.e., Perfect Collusion)
* Bertrand and Cournot Competition with Profit Weights
* Non-Profit Conduct Models
* Marginal Cost Pricing (i.e., zero markup models)
* Rule-of-Thumb Models (i.e., markups as a fixed percentage of price or cost)
* Bertrand with Scaled Costs

 Constant Markup Models (that do not vary with demand or cost)

¢ Vertical Models

We also detail two options for how a user can test models outside this class.

20
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2.2.1 Preliminaries and notation

Throughout, we consider settings in which potentially multi-product firms, indexed by f compete across markets,

indexed by ¢. In each market, there are J; products offered. Each firm f offers a distinct subset of those products, J;.

We use the jt index to denote observations at the product-market level, and we use the ¢ index to denote the vector

which stacks all J; observations in market t. Demand for product 5 in market ¢, which depends on p;, the price of all

products in the market, is denoted s, (p;). Realizations of market shares across products in magket t at the equilibrium
St

prices p; are denoted s;. We denote the J; x J; matrix of own- and cross-price derivatives as o> SO that the (4, k)-th

element denotes the marginal effect of an increase in the price of product k£ on the market share of product j.

The researcher observes, in each market ¢, realizations of equilibrium prices and shares for a true model of conduct
which generated the data: p, and s;. The researcher does not know the true model, but wishes to test a menu of models,
M. For each model m in the menu, the stacked first order condition in market ¢ can be expressed as:

Dt — Cmt = Ay 2.1

Here, A,,; are the stacked markups implied by model m in market ¢. For the models we consider, the markups A,,;
can be expressed as known functions of prices and exogenous variables and typically depend on the demand system.
Thus, given equilibrium outcomes, the known market structure (i.e., which firm sells which products), and the demand
system, A+ can be computed. ¢,,; are the marginal costs implied by the model which satisfy the system of first order
conditions.

To specify a menu of models in pyRVtest, the researcher creates a ModelFormulation for each of the models in the
menu when defining the testing problem. In what follows, we show how to specify the ModelFormulation for the class
of models that the code can currently handle.

2.2.2 Bertrand Competition: m = B

Suppose the researcher wants to include in the menu of models the Bertrand-Nash model of competition in prices. In
market ¢, firm f sets prices for all j € Jy to maximize the sum of its profits across those products. Letting ps; be the
vector of those prices, the firm solves:

max Z (pjt — cji)sjt(pt) 2.2)

Pre .
JET st

The stacked first-order conditions across firms in market ¢ can be written as (p; — ¢;) = Ap; where A, is:

ds:\ 7"
ABt = (Qt ® t) St. (23)
Ipy

Here, , is the standard J; x J; ownership matrix so that the (j, k)-th element is 1 if products j and & are sold by the
same firm, and 0 otherwise. Furthermore, ® denotes element-by-element multiplication.

To include Bertrand as one of the models to test with pyRVtest, the researcher must include in the product_data a
column for which each row indicates the identity of the firm selling the corresponding product. If that column is named
firm_ids, then the Bertrand model can be specified with the following ModelFormulation.

model_formulation = pyRVtest.ModelFormulation(model_downstream='bertrand', ownership_
—.downstream="firm_ids")

Note that we label the options model_downstream and ownership_downstream as the code also accommodates
vertical models. See the example below.
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2.2.3 Monopoly (i.e., Perfect Collusion): m = M

Now suppose that in market ¢, prices p;; are chosen to maximize the sum of its profits across all products in market ¢,

or:

max > (pse — c5e)s50(pt) (24)
JET:

This can arise in settings with more than one firm if the firms are perfectly colluding. The stacked first-order conditions

across firms in market ¢ can be written as (p; — ¢;) = Ay Where Ay is:

85t -1
Ape = 1,0 — St. (2.5)

Here, 1; is a J; x J; matrix of ones.

The researcher can specify Monopoly as one of the models to test with pyRVtest, using the following
ModelFormulation. Note that here, if the researcher was to include a ownership_downstream option, the package
will override this and build the ownership matrix in each market as a matrix of ones.

model_formulation = pyRVtest.ModelFormulation(model_downstream='monopoly')

2.2.4 Cournot Competition with Differentiated Products: m = C

Suppose the researcher wants to include in the menu of models Cournot competition (quantity-setting) with differ-
entiated products, in which each firm simultaneously chooses market shares for its Jy; products, sy, to maximize:

max Y sju(pji(si) — cje) (2.6)

Sft .
JET st

where pjt(st) represents inverse demand for product j in market ¢. The stacked first-order conditions are p;; — ¢;; =

Acy where Acy is:
-1
Aoy = (Qt ® (ast) ) ss. 2.7
opy

Here, €, is the standard J; x J; ownership matrix so that the (j, k)-th element is 1 if product j and & are sold by the
same firm, and O otherwise. Furthermore, ® denotes element-by-element multiplication.

To include Cournot as one of the models to test with pyRVtest, the researcher must include in the product_data a
column for which the i-th row indicates the identity of the firm selling the corresponding product. If that column is
named firm_ids, then the Cournot model can be specified with the following ModelFormulation.

model_formulation = pyRVtest.ModelFormulation(model_ downstream='cournot', ownership_
—downstream="firm_ids")

2.2.5 Bertrand and Cournot with Profit Weights: m = P/ ()\)

Suppose the researcher wants to include in the menu of models either price or quantity competition in which the
firms partially internalize the effect of their actions on their rivals’ profits. This can occur, for example, in a model
of common ownership (e.g., Backus, Conlon, and Sinkinson (2022)) or imperfect collusion (e.g., Miller and Weinberg
(2017)). Now, the first order conditions of the Bertrand and Cournot models contain an ownership matrix specified by
the user for which the (7, k)-th element is A .

For example, to include Bertrand with a given set of profit weights as one of the models to test with pyRVtest, the
researcher specifies within the ModelFormulation, a kappa_specification as used in the build_ownership
function in PyBLP:
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kappa_specification = 1
model_formulation = pyRVtest.ModelFormulation(model_downstream='bertrand', ownership_
—downstream="firm_ids', kappa_specification_downstream = kappa_specification)

Likewise, to include Cournot with the given profit weights, the ModelFormulation is:

model_formulation = pyRVtest.ModelFormulation(model_ downstream='cournot', ownership_
—.downstream="firm_ids', kappa_specification_downstream = kappa_specification)

2.2.6 Non-profit Conduct: m = N(\)

Suppose the researcher wants to model non-profit conduct where firms choose their own prices to maximize a weighted
sum of profit and consumer surplus as in (Duarte, Magnolfi, and Roncoroni (2022)) where non-profit firms place a
weight of 1 — A € (0, 1) on welfare relative to profit. This can be achieved by augmenting the first order conditions
of the Bertrand model above. Specifically, one adjusts €2, by setting the (7, k)-th element of the ownership matrix to
1/\j if the firm selling products j and £ is a non-profit.

For example, to test a model in which non-profit firms have given welfare weights with pyRVtest, the researcher specifies
within the ModelFormulation, a kappa_specification encoding those weights as used in the build_ownership
function in PyBLP:

model_formulation = pyRVtest.ModelFormulation(model downstream='bertrand', ownership_
—.downstream="firm_ids', kappa_specification_downstream = kappa_specification)

2.2.7 Marginal Cost Pricing (Perfect Competition / Zero Markup): m = PC

Consider a class of models where firms selling differentiated products set prices equal to marginal costs so that markups
are zero, Apcy = 0.

For example, to include marginal cost pricing in the menu of models to test with pyRVtest, the researcher includes the
following ModelFormulation. Note that here, if the researcher was to include a ownership_downstream option, the
package will override this set markups to zero.

model_formulation = pyRVtest.ModelFormulation(model_downstream='perfect_competition')

2.2.8 Rule of Thumb Models: m = R(\)

Consider a class of models where markups are a fraction A of price or cost. For example, suppose the firm sets prices
according to the rule-of-thumb: p; = (1 + A)c;. In this case, the stacked first order conditions are p; — ¢; = Apy
where

ARt = )\Ct (28)

Equivalently, markups can be equivalently expressed as a function of prices, or

A

Apt = ——
Rt 1+>\pt

(2.9)

For now, pyRVtest only accommodates models where ) is constant across firms and markets.

For example, to include model of rule-of-thumb A, the researcher specifies within the ModelFormulation, a
cost_scaling option equal to a column in the product_data containing the scalar value 1mbda (If markups are
equal to cost or equivalently 50% of price, then Imbda = 1. Instead, if markups are equal to 50% of cost or equivalently
1/3 of price, then 1mbda = 0.5)
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Imbda = 'cost_scaling_column'
model_formulation = pyRVtest.ModelFormulation(model_downstream='perfect_competition',.
—cost_scaling=1mbda)

2.2.9 Bertrand with Scaled Costs: m = SC()\)
Next, consider a class of models where firms choose their own prices in market ¢ to solve:

max Z (Pjt — Acje)sje(pe) (2.10)

Prt .
JET st

The stacked first-order conditions across firms in market ¢ can be written as (p; — ¢;) = Agct Where
Agot = Apt + (1 = Ny (2.11)

and A g, are the Bertrand markups.

Markups of this form arise in the model of collusion considered in Harrington (2023), where firms collude via cost
coordination. These markups also arise in settings where two firms compete a la Bertrand in prices, but each one
maximizes a weighted sum of profits and revenues, where % is the weight put on revenue relative to profit (e.g.,

Baumol (1958)).
For now, pyRVtest only accommodates models where ) is constant across firms and markets.

For example, to include model with cost-scaling A, the researcher specifies within the ModelFormulation, a
cost_scaling option equal to the scalar value 1mbda:

model_formulation = pyRVtest.ModelFormulation(model_downstream='bertrand', ownership_
—.downstream="'firm_ids', cost_scaling=1mbda)

2.2.10 Constant Markup Models: m = C' M (n)

Next, consider a class of models where the markup for each product j in each market ¢ is equal to a constant 7);, which
does not depend on demand or cost, or
Acnje = Nyt (2.12)

The researcher can include a constant markup model in the menu to be tested by using within ModelFormulation the
user_specified_markups option. Here, the user creates a column in product_data where each row is the value
75+ corresponding to product j in market ¢. If this column is named eta, the ModelFormulation is:

model_formulation = pyRVtest.ModelFormulation(user_supplied_markups='eta')

2.2.11 Vertical Models with unobserved wholesale costs

Now we consider models with vertical interactions between retailers and wholesalers (we denote each with superscript
and w respectively). Consider the simple linear pricing model from Villas-Boas (2007) where wholesalers individually
set wholesale prices p;’ to maximize their profits in market ¢, and, given p;’, retailers choose retailer prices p; to
maximize their profits in the same market. Assuming that wholesale prices are unobserved, we can sum the stacked
first order conditions for wholesalers and retailers to obtain:

Pp = ¢ — ¢ = A+ Apy (2.13)
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where A';,, the vector of retailer Bertrand markups, are:

ds;\
o= Q" ¢ 2.14
Bt ( t @ 8p;) St ( )

and A'g,, the vector of wholesaler Bertrand markups, are:

p Gst -t
A — | O — 2.15
b <t®3p3> ” @1
If a researcher wants to include linear pricing in the menu of models to be tested, she must specify as columns of
product_data both retailer ids and wholesaler ids. Assuming these are called, respectively, retailer_ids and
wholesaler_ids, the following ModelFormulation is used:

model_formulation = pyRVtest.ModelFormulation(model_downstream='bertrand', ownership_
—downstream="retailer_ids', model_upstream='bertrand', ownership_upstream='wholesaler_
—ids")

One could allow for a different model upstream or downstream by changing the name of model_downstream and
model_upstream (for example, in the context of consumer packaged goods market, if each store is a market, then the
downstream model is monopoly). One can also allow for profit weights or non-profit conduct in 2} and 2}’ by specify-
ing kappa_specification_downstream and kappa_specification_upstream. A ModelFormulation can also
accommodate partial vertical integration in a market using the vertical_integration option. In this case, the
product_data must contain a column which equals one if the product is vertically integrated in the given market and
zero otherwise. Supposing this column is named vi_id, the linear pricing model with partial vertical integration can be
specified with the following ModelFormulation

model_formulation = pyRVtest.ModelFormulation(model downstream='bertrand', ownership_
—.downstream="retailer_ids', model_upstream='bertrand', ownership_upstream='wholesaler_
—ids', vertical_integration="vi_id")

2.2.12 Options to Test Other Models

If the user wants to include in the menu models not included in the current library, there are two options.

First, if the model of conduct implies a vector of markups which are a known function of the ownership matrix, the
response matrix, or shares, then the user can pass that function using the custom_model_specification input for
a ModelFormulation. This input takes a dictionary where the key is the custom model name, and the value is a string
formula to be evaluated. For example, if we wanted to test the Bertrand markups using this option (assuming Bertrand
was not already part of our menu of models), we would write:

model_formulation = pyRVtest.ModelFormulation(model_downstream='other', custom_model_
—specification={'bertrand': '-inv(ownership_matrix * response_matrix) @ shares'})

Otherwise, if the markups the user wishes to test are not a known function of the ownership matrix, the response matrix,
or shares, the user can pass an arbitrary vector using the user_specified_markups option as illustrated for the
Constant Markup Models above. For example, if the user creates a column in the product_data called my_markups,
the user can test these markups by defining the following ModelFormulation:

model_formulation = pyRVtest.ModelFormulation(user_supplied_markups="my_markups')

Please note, when using the option user_specified_markups, the code is not able to adjust the pairwise RV test
statistics, the model confidence set, and the pairwise F-statistics for the errors coming from demand estimation or for
clustering.
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CHAPTER
THREE

API DOCUMENTATION

The majority of the package consists of classes, which compartmentalize different aspects of testing models of firm
conduct.

There are some convenience functions as well.

3.1 Configuration Classes

Formulation(formula[, absorb, ...]) Configuration for designing matrices and absorbing
fixed effects.
ModelFormulation([model_downstream, ...]) Configuration for designing matrices and absorbing

fixed effects.

3.1.1 pyRVtest.Formulation

class pyRVtest.Formulation(formula, absorb=None, absorb_method=None, absorb_options=None)

Configuration for designing matrices and absorbing fixed effects.

Note: This class is a copy of the Formulation class from PyBLP.

Internally, the patsy package is used to convert data and R-style formulas into matrices. All of the standard binary
operators can be used to design complex matrices of factor interactions:

* + - Set union of terms.

e - - Set difference of terms.

e * - Short-hand. The formulaa * bisthesameasa + b + a:b.
e / - Short-hand. The formula a / bisthe sameasa + a:b.

¢ : - Interactions between two sets of terms.

e ** _Interactions up to an integer degree.

However, since factors need to be differentiated (for example, when computing elasticities), only the most essen-
tial functions are supported:

» C- Mark a variable as categorical. See patsy.builtins.C(). Arguments are not supported.
* T - Encapsulate mathematical operations. See patsy.builtins.I().

* log - Natural logarithm function.
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* exp - Natural exponential function.

Data associated with variables should generally already be transformed. However, when encapsulated by I(),
these operators function like normal mathematical operators on numeric variables: + adds, - subtracts, * multi-
plies, / divides, and ** exponentiates.

Internally, mathematical operations are parsed and evaluated by the SymPy package, which is also used to sym-
bolically differentiate terms when derivatives are needed.

Parameters

» formula (str) — R-style formula used to design a matrix. Variable names will be validated
when this formulation and data are passed to a function that uses them. By default, an inter-
cept is included, which can be removed with 0 or -1. If absorb is specified, intercepts are
ignored.

* absorb (str, optional) — R-style formula used to design a matrix of categorical variables
representing fixed effects, which will be absorbed into the matrix designed by formula by
the PyHDFE package. Fixed effect absorption is only supported for some matrices. Unlike
formula, intercepts are ignored. Only categorical variables are supported.

* absorb_method (str, optional) — Method by which fixed effects will be absorbed. For a
full list of supported methods, refer to the residualize_method argument of pyhdfe.
create().

By default, the simplest methods are used: simple de-meaning for a single fixed effect and
simple iterative de-meaning by way of the method of alternating projections (MAP) for mul-
tiple dimensions of fixed effects. For multiple dimensions, non-accelerated MAP is unlikely
to be the fastest algorithm. If fixed effect absorption seems to be taking a long time, con-
sider using a different method such as 'lsmr', using absorb_options to specify a MAP
acceleration method, or configuring other options such as termination tolerances.

* absorb_options (dict, optional) — Configuration options for the chosen method, which
will be passed to the options argument of pyhdfe.create().

3.1.2 pyRVtest.ModelFormulation

class pyRVtest.ModelFormulation(model_downstream=None, model_upstream=None,

ownership_downstream=None, ownership_upstream=None,
custom_model_specification=None, vertical_integration=None,
unit_tax=None, advalorem_tax=None, advalorem_payer=None,
cost_scaling=None, kappa_specification_downstream=None,
kappa_specification_upstream=None, user_supplied_markups=None)

Configuration for designing matrices and absorbing fixed effects.

For each model, the user can specify the downstream and upstream (optional) models, the downstream and
upstream ownership structure, a custom model and markup formula, and vertical integration. The user can also
choose to forgo markup computation and specify their own markups with user_supplied_markups. Additionally,
there are specifications related to testing conduct with taxes.

There is a built-in library of models that the researcher can choose from.

Here, we have another difference with PyBLP. In PyBLP, if one wants to build an ownership matrix, there must
be a variable called firm_id in the product_data. With pyRVtest, the researcher can pass any variable in the
product_data as ownership_downstream and from this, the ownership matrix in each market will be built.
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Note: We are working on adding additional models to this library as well as options for the researcher to specify
their own markup function.)

Parameters

model_downstream (str, optional) — The model of conduct for downstream firms (or if

no vertical structure, the model of conduct). One of “bertrand”, “cournot”, “monopoly”,
“perfect_competition”, or “other”.

model_upstream (str, optional) — The model of conduct for upstream firms. One of

CTIYS LTINYS

“bertrand”, “cournot”, “monopoly”, “perfect_competition”, or “other”.

ownership_downstream (str, optional) — Column indicating which firm ids to use for own-
ership matrix construction for downstream firms.

ownership_upstream (str, optional) — Column indicating which firm ids to use for owner-
ship matrix construction for upstream firms.

custom_model_specification (dict, optional)— A dictionary containing an optional cus-
tom markup formula specified by the user. The specified function must consist of objects
computed within the package.

vertical_integration (str, optional) — The column name for the data column which
indicates the vertical ownership structure.

unit_tax (str, optional) — The column name for the vector containing information on unit
taxes.

advalorem_tax (str, optional) — The column name for the vector containing information on
advalorem taxes.

advalorem_payer (str, optional) — A string indicating who pays for the advalorem tax in
the given model.

cost_scaling (str; optional) — The column name for the cost scaling parameter.

kappa_specification_downstream (Union/str, Callable[[Any, Any], float]]], optional)
— Information on the degree of cooperation among downstream firms for each market.

kappa_specification_upstream (Union/str, Callable[[Any, Any], float]]], optional) —
Information on the degree of cooperation among upstream firms for each market.

user_supplied_markups (str, optional) — The name of the column containing user-
supplied markups.

3.2 Data Manipulation Functions

There are also a number of convenience functions that can be used to compute markups, or manipulate other pyRVtest

objects.

build_markups(products, demand_results, ...)

dard models.

This function computes markups for a large set of stan-

read_pickle(path) Load a pickled object into memory.

3.2. Data Manipulation Functions
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3.2.1 pyRVtest.build_markups

pyRVtest.build_markups (products, demand_results, model_downstream, ownership_downstream,

model_upstream=None, ownership_upstream=None, vertical_integration=None,
custom_model_specification=None, user_supplied_markups=None)

This function computes markups for a large set of standard models.

The models that this package is able to compute markups for include:

In order to compute markups, the products data and PyBLP demand estimation results must be specified, as well
as at least a model of downstream conduct. If model_upstream is not specified, this is a model without vertical

standard bertrand with ownership matrix based on firm id

price setting with arbitrary ownership matrix (e.g. profit weight model)

standard cournot with ownership matrix based on firm id

quantity setting with arbitrary ownership matrix (e.g. profit weight model)

monopoly

bilateral oligopoly with any combination of the above models upstream and downstream

bilateral oligopoly as above but with subset of products vertically integrated

any of the above with consumer surplus weights

integration.

Parameters

Returns

products (recarray) — The product_data containing information on markets and product
characteristics. This should be the same as the data used for demand estimation. To compute
markups, this data must include prices, market_ids, and shares.

demand_results (structured array-like) — The results object obtained from using the py-
BLP demand estimation procedure. We use built-in PyBLP functions to return the demand
Jacobians and Hessians (first and second derivatives of shares with respect to prices).

model_downstream (ndarray) — The model of conduct for downstream firms. Can be one
of [bertrand, cournot, monopoly, perfect_competition, other]. Only specify option other if
supplying a custom markup formula.

ownership_downstream (ndarray) — The ownership matrix for price or quantity setting
(optional, default is standard ownership).

model_upstream (ndarray, optional) — Upstream firm model of conduct. Only specify op-
tion other if supplying a custom markup formula. Can be one of [‘none’ (default), bertrand,
cournot, monopoly, perfect_competition, other].

ownership_upstream (ndarray, optional) — Ownership matrix for price or quantity setting
of upstream firms (optional, default is None).

vertical_integration (ndarray, optional) — Vector indicating which product_ids are
vertically integrated (ie store brands) (optional, default is None).

custom_model_specification (dict, optional) — Dictionary containing a custom markup
formula and the name of the formula (optional, default is None).

user_supplied_markups (ndarray, optional) — Vector containing user-computed markups
(optional, default is None). If user supplied own markups, this function simply returns them.

. Computed markups, downstream markups, and upstream markups for each model.
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Return type
tuple[list, list, list]

Notes

For models without vertical integration, firm_ids must be defined in product_data for vi models, and

firm_ids_upstream and firm_ids (=firm_ids_downstream) must be defined.

3.2.2 pyRVtest.read_pickle

pyRVtest.read_pickle(path)

Load a pickled object into memory. This is a simple wrapper around pickle.load.

Parameters
path (str or Path) — File path of a pickled object.

Returns
The unpickled object.

Return type
object

3.3 Problem Class

Problem(cost_formulation, ...[, ...]) A firm conduct testing-type problem.

3.3.1 pyRVtest.Problem

class pyRVtest.Problem(cost_formulation, instrument_formulation, product_data, demand_results,

model_formulations=None, markup_data=None)

A firm conduct testing-type problem.

This class is initialized using the relevant data and formulations, and solved with Problem. solve().

Parameters

e cost_formulation (Formulation) — Formulation is a list of the variables for observed
product characteristics. All observed cost shifters included in this formulation must be
variables in the product_data. To use a constant, one would replace 0 with /. To ab-
sorb fixed effects, specify absorb = ‘C(variable)’, where the variable must also be in
the product_data. Including this option implements fixed effects absorption using [PY-
HDFE](https://github.com/jeffgortmaker/pyhdfe), a companion package to PyBLP.

e instrument_formulation (Formulation or sequence of Formulation) — Formulation is
list of the variables used as excluded instruments for testing. For each instrument formulation,
there should never be a constant. The user can specify as many instrument formulations as
desired. All instruments must be variables in product_data.

Note:  Our instrument naming conventions differ from PyBLP. With PyBLP, one
specifies the excluded instruments for demand estimation via a naming convention in
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the product_data: each excluded instrument for demand estimation begins with “de-
mand_instrument” followed by a number ( i.e., demand_instrument0). In pyRVtest,
you specify directly the names of the variables in the product_data that you want to
use as excluded instruments for testing (i.e., if you want to test with one instrument
using the variable in the product_data named, “transportation_cost” one could specify
pyRVtest.Formulation( ‘0 + transportation_cost’).

» model_formulations (sequence of ModelFormulation) — ModelFormulation defines the
models that the researcher wants to test. There must be at least two instances of ModelFor-
mulation specified to run the firm conduct testing procedure.

product_data (structured array-like) — This is the data containing product and market ob-
servable characteristics, as well as instruments.

» demand_results” (structured array-like) — The results object returned by pybip.solve.

Methods

solve([demand_adjustment, cluster-  Solve the problem.
ing_adjustment])

Once initialized, the following method solves the problem.

Problem.solve([demand_adjustment, ...]) Solve the problem.

3.3.2 pyRVtest.Problem.solve

Problem. solve (demand_adjustment=False, clustering_adjustment=False)
Solve the problem.

Given demand estimates from PyBLP, we compute implied markups for each model m being tested. Marginal
cost is a linear function of observed cost shifters and an unobserved shock.

The rest of the testing procedure is done for each pair of models, for each set of instruments. A GMM measure
of fit is computed for each model-instrument pair. This measure of fit is used to construct the test statistic.

Parameters

» demand_adjustment (Optional [bool]) — (optional, default is False) Configuration that
allows user to specify whether to compute a two-step demand adjustment. Options are True
or False.

* clustering_adjustment (Optional [str]) — (optional, default is unadjusted) Configu-
ration that specifies whether to compute clustered standard errors. Options are True or False.

Returns
ProblemResults of the solved problem.

Return type
ProblemResults
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3.4 Problem Results Class

Solved problems return the following results class.

ProblemResults Results of running the firm conduct testing procedures.

3.4.1 pyRVtest.ProblemResults

class pyRVtest.ProblemResults
Results of running the firm conduct testing procedures.
problem
An instance of the Problem class.

Type

ndarray
markups
Array of the total markups implied by each model (sum of retail and wholesale markups).

Type
ndarray

markups_downstream
Array of the retail markups implied by each model.

Type

ndarray
markups_upstream
Array of the manufacturer markups implied by each model of double marginalization.

Type
ndarray

taus
Array of coefficients from regressing implied marginal costs for each model on observed cost shifters.

Type

ndarray
mc
Array of implied marginal costs for each model.

Type
ndarray

Array of moments for each model and each instrument set of conduct between implied residualized cost
unobservable and the instruments.

Type

ndarray

Array of lack of fit given by GMM objective function with 2SLS weight matrix for each set of instruments
and each model.
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Type

ndarray
RV_numerator
Array of numerators of pairwise RV test statistics for each instrument set and each pair of models.

Type

ndarray
RV_denominator
Array of denominators of pairwise RV test statistics for each instrument set and each pair of models.

Type

ndarray
TRV
Array of pairwise RV test statistics for each instrument set and each pair of models.

Type

ndarray

Array of pairwise F-statistics for each instrument set and each pair of models.

Type

ndarray
MCS_pvalues
Array of MCS p-values for each instrument set and each model.

Type

ndarray
rho
Scaling parameter for F-statistics.

Type

ndarray
unscaled_F
Array of pairwise F-statistics without scaling by rho.

Type
ndarray

F_cv_size_list
Vector of critical values for size for each pairwise F-statistic.

Type

ndarray
F_cv_power_list

Vector of critical values for power for each pairwise F-statistic.

Type

ndarray
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Methods

to_pickle(path) Save these results as a pickle file.

The results can be pickled or converted into a dictionary.

ProblemResults. to_pickle(path) Save these results as a pickle file.

3.4.2 pyRVtest.ProblemResults.to_pickle

ProblemResults.to_pickle(path)
Save these results as a pickle file. This function is copied from PyBLP.

Parameters
path (str or Path) — File path to which these results will be saved.
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MIT License
Copyright (c) 2021 Marco Duarte, Lorenzo Magnolfi, Mikkel Solvsten, Christopher Sullivan, and Anya Tarascina.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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